Why Kokonte is Ghana’s superfood (1)

Recently, I wrote about kokonte and why it has the potential to reduce colon cancer. The article further highlights the numerous significance of eating kokonte and its impacts on our health such as reducing blood sugar, high blood pressure, and many others. In this article, I will explain to you why kokonte is a super food in the Ghanaian jurisdiction.
Besides, any food that takes a longer time to break down the glucose and fructose to be absorbed by the blood is truly healthy. While light food such as white rice takes less than an hour to break down, kokonte takes longer hours as propagated. Rice only takes 45 minutes to be absorbed by the blood, thus increasing the risk of diabetes.
Many nutritionists even claim that the longer it takes for the local food to digest is unhealthy. This is purely a wrong nutritional doctrine. It is also nothing but a food conspiracy by the industries that want to sell their foreign products with the healthy label.
The problem lies in the staples, not the accompaniments. For decades, we have been eating the wrong staples. It is high time people see that and eat their local healthy foods like kokonte.

Before we delve into the article, let’s examine what the glycemic index is all about. The Glycemic index (GI) quantifies and measures the blood glucose-raising effect of a food containing a specific amount of carbohydrate. Due to these, concerns have been raised about the quality of carbohydrates and the indices that influence their metabolism. Remember that not all carbohydrates are created the same. Let’s tackle the studies to justify why kokonte is a superfood.

One recent study which makes Kokonte a superior diet was conducted by Yeboah et al.(2019). Yeboah and colleagues aim to investigate the effect of processing on the glycemic index of five Ghanaian corn and cassava staples. In this study, ten healthy subjects consisting of five males and five females were included. Study subjects were served 50g of pure glucose containing 50g of available carbohydrates and 200ml of pure water. Glucose, which served as the reference food was given to subjects on two different occasions. The subjects were also served specific 50g of abolo, akple, kafa, local kokonte, and processed kokonte on specific days. The glycemic index figures were assessed by using official methods and reported as the mean for the ten study subjects.
The study found that locally made kokonte had the least GI of 7 followed by processed kokonte which had a GI of 18 whiles kafa had a low GI of 29. Abolo had a medium GI value of 58 and akple also had a medium glycemic index value of 69. There was no significant difference between the GI of locally made kokonte and processed kokonte indicating processing had no significant effect on the GI of kokonte.

Yeboah et al. (2019) also found that the nutrient content of cassava differs depending on the cooking method. Locally made kokonte , as well as processed kokonte, were prepared using cassava through the process of boiling. Even though both cassava staples had lower glycemic index values of 7 and 18, respectively, their total dietary fiber content per 100g as well as their specific quantities that contained 50g of available carbohydrates differed. Locally made kokonte had a total dietary fiber content of 1.1g per 100g and 0.66g per its specific quantity that contained 50g of available carbohydrate (60g). Processed kokonte had no amount of dietary fiber per 100g as well as its specific quantity that contained 50g of available carbohydrate (60g).
The same quantity of 60g was measured for both locally made and processed kokonte so that their variations and the glycemic index could be measured and compared weight for weight.
This can account for the reason why processed kokonte had a high glycemic index figure of 18 whiles locally made kokonte had a glyce•
Kokonte is nutritious
mic index of 7 even though both staples had low glycemic index values. This explains the function of dietary fiber in controlling the way food is broken down (digested) and absorbed into the bloodstream and also delaying gastric emptying. Since processed kokonte had no dietary fiber, it was rapidly digested and absorbed into the bloodstream, causing a rapid increase in the blood glucose level than locally made kokonte.

Among the corn staples, kafa had the lowest GI whereas abolo and akple had medium glycemic figures 29,58, and 69. In Yeboah et al.(2019) study, they found that corn-related diets have high GI as compared to cassava-related diets. This disparity was explained: Just like the other corn staples, cassava went through some series of processing methods and then finally boiled it before consumption. These series of processing methods include peeling, washing, cutting into specific sizes, sun drying/fermentation, pounding, milling, and sieving/shifting. Two studies(Ascheri et al. 1995; Cereda et al. 1985) explained that the process of sun drying and fermentation occurred and this introduced some amount of acetic acid into the cassava. Two other studies (Demiate et al. 2000; Pereira et al. 1999) found that some microorganisms such as amylolytic enzymes and organic acids such as acetic acids are formed during cassava fermentation. This could be a contributing factor to the reason why both processed and locally made kokonte had lower glycemic index values.
Brand et al.(1985) further cement that sun drying and cooling affect starch breakdown and in turn affect glycemic response and glycemic index figures. The hot temperature treatment and cooling cycles which occurred during the cassava flour production could have some amounts of retrograded starches. The presence of these starches in flour makes it less susceptible to being digested by digestive enzymes. These, however, reduce the glycemic response and in turn reduce the GI value. This could also account for the reason why both locally made and processed kokonte had low GI values. It has been established that during the preparation of both processed and locally made kokonte, the cassava flour was added to boiling water and kneaded. As time went on, more flour was added to the mixture and kneaded to prevent the formation of lumps and achieve the desired thickness. As time went on the fire was reduced to prevent food from burning.
This in turn reduced the amount of heat that was applied to the food.

To be Continued


Show More
Back to top button